FOOTWEAR Pumps on YOOXCOM Bibi Lou gziI9

SKU30639360625
FOOTWEAR - Pumps on YOOX.COM Bibi Lou gziI9
FOOTWEAR - Pumps on YOOX.COM Bibi Lou
floral slingback pumps Pink amp; Purple Marni uEqrKKH
FOOTWEAR Loafers on YOOXCOM Suecomma Bonnie 07t2ez

It is easy to check that the ( 5 ) is a special case of Theorem 2 with \(r_{n,i} = 1; n=1,2,\ldots ; i = 1,2,\ldots n\) .

Theorem 3
$$\begin{aligned} - {{\bar{{\lambda _n}}} ^{ - 1}}\left( {{e^{\bar{{\lambda _n}}} } - 1} \right) \sum \limits _{i = 1}^n {\min \left\{ {\alpha _i ,\frac{{\beta _i - \alpha _i }}{{{w_0} + 1}}} \right\} } \le P\left( {W_{n} \le {w_0}} \right) - \sum \limits _{k = 0}^{{w_0}} {\frac{{{\bar{{\lambda _n}} ^k}{e^{ - {\bar{{\lambda _n}}} }}}}{{k!}}} \le 0, \end{aligned}$$

With \(\alpha _i = 1 - {p^{r_{n,i}}_{n,i}} - {r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}}\) , \(\beta _i = {r_{n,i}}\left( {{p^{ - {r_{n,i}}}_{n,i}} - 1 - {r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}}} \right) .\)

$$\begin{aligned} {h_{w_0}}\left( w \right) - \sum \limits _{k =0}^{w_0} {{e^{ - {\bar{{\lambda _n}}} }}\frac{{{\bar{{\lambda _n}} ^k}}}{{k!}}} = {\bar{{\lambda _n}}} f\left( {w + 1} \right) - wf\left( w \right) . \end{aligned}$$
$$\begin{aligned}\displaystyle P\left( {W_n \le {w_0}} \right) - \sum \limits _{k = 0}^{{w_0}} {\frac{{{\bar{{\lambda _n}} ^k}{e^{ - {\bar{{\lambda _n}}} }}}}{{k!}}}\nonumber \\\quad = \displaystyle E\left[ {{\bar{{\lambda _n}}} f\left( {W_n + 1} \right) - W_n f\left( W_n \right) } \right] \nonumber \\\quad = \sum \limits _{i = 1}^n {E\left[ {{{r_{n,i}}{q_{n,i}}}f\left( {W_n + 1} \right) - {X_{n,i}}f\left( W_n \right) } \right] }. \end{aligned}$$
(12)
$$\begin{aligned}\displaystyle E[{r_{n,i}}{{q_{n,i}}}f(W_{n} + 1) - {X_{n,i}}f(W_{n})]\\\quad =\displaystyle E[E[({r_{n,i}}{{q_{n,i}}}f({W_i} + {X_{n,i}} + 1) - {X_{n,i}}f({W_i} + {X_{n,i}}))|{X_{n,i}}]] \\\quad = \displaystyle E\left[ {{r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}}f({W_i} + 1)} \right] + \displaystyle E[{r_{n,i}^2}{q^2_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + 2) - {r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}}f({W_i} + {X_{n,i}})]\\\qquad + \displaystyle \sum \limits _{k \ge 2} {E[{r_{n,i}}C_{{r_{n,i}} + k - 1}^k{q^{k + 1}_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k + 1) - kC_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k)]} \\\quad = \displaystyle \sum \limits _{k \ge 2} {E[{r_{n,i}}C_{{r_{n,i}} + k - 2}^{k - 1}{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k) - kC_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k)]} \\\quad =\displaystyle \sum \limits _{k \ge 2} {E[\frac{{{r_{n,i}}k}}{{{r_{n,i}} + k - 1}}C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k) - kC_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k)]} \\\quad =\displaystyle \sum \limits _k {\frac{{k\left( {1 - k} \right) }}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}f({W_i} + k) \\\quad \ge \displaystyle - \sum \limits _k {\frac{{k\left( {k - 1} \right) }}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}\mathop {\sup }\limits _{w \ge k} f\left( w \right) . \end{aligned}$$
$$\begin{aligned}-\displaystyle \sum \limits _k {\frac{{k\left( {k - 1} \right) }}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}{p^{r_{n,i}}_{n,i}}\mathop {\sup }\limits _{w \ge k} f\left( w \right) \nonumber \\\quad \ge - {{\bar{{\lambda _n}}} ^{ - 1}}\left( {{e^{\bar{{\lambda _n}}} } - 1} \right) {p^{r_{n,i}}_{n,i}}\min \left\{ {\sum \limits _k {\frac{{k - 1}}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}},} \right. \nonumber \\\qquad \left. { \frac{1}{{{w_0} + 1}}\sum \limits _k {\frac{{k\left( {k - 1} \right) }}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}} \right\} . \end{aligned}$$
(13)
$$\begin{aligned} {p^{r_{n,i}}_{n,i}}\sum \limits _{k} {\frac{{k - 1}}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}} \le 1 - {p^{r_{n,i}}_{n,i}} - {r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}} \end{aligned}$$
(14)
$$\begin{aligned}\displaystyle {p^{r_{n,i}}_{n,i}}\sum \limits _{k} {\frac{{k\left( {k - 1} \right) }}{{{r_{n,i}} + k - 1}}} C_{{r_{n,i}} + k - 1}^k{q^k_{n,i}}\nonumber \\\quad \le {r_{n,i}}\left( {{p^{ - {r_{n,i}}}_{n,i}} - 1 - {r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}}} \right) - \left( {1 - {p^{r_{n,i}}_{n,i}} - {r_{n,i}}{{q_{n,i}}}{p^{r_{n,i}}_{n,i}}} \right) . \end{aligned}$$
(15)
$$\begin{aligned} - {{\bar{{\lambda _n}}} ^{ - 1}}\left( {{e^{\bar{{\lambda _n}}} } - 1} \right) \sum \limits _{i = 1}^n {\min \left\{ {\alpha _i ,\frac{{\beta _i - \alpha _i }}{{{w_0} + 1}}} \right\} } \le P\left( {W_{n} \le {w_0}} \right) - \sum \limits _{k = 0}^{{w_0}} {\frac{{{\bar{{\lambda _n}} ^k}{e^{ - {\bar{{\lambda _n}}} }}}}{{k!}}} \le 0. \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \alpha _i = 1 - {{p_{n,i}}} - {{q_{n,i}}}{{p_{n,i}}} = \displaystyle \left( {1 - {{p_{n,i}}}} \right) \left( {1 - {{p_{n,i}}}} \right) = {q^2_{n,i}}, \\ \beta _i = {p^{-1}_{n,i}} - 1 - {{q_{n,i}}}{{p_{n,i}}} = \displaystyle \frac{{1 - {{p_{n,i}}}}}{{{{p_{n,i}}}}} - \left( {1 - {{p_{n,i}}}} \right) {{p_{n,i}}} = \displaystyle \frac{{\left( {1 - {{p_{n,i}}}} \right) \left( {1 - p_{n,i}^2} \right) }}{{{{p_{n,i}}}}} = {q^2_{n,i}}\frac{{1 + {{p_{n,i}}}}}{{{{p_{n,i}}}}}, \\ \beta _i - \alpha _i = \displaystyle {q^2_{n,i}}\left( {\frac{{1 + {{p_{n,i}}}}}{{{{p_{n,i}}}}} - 1} \right) = \frac{{{q^2_{n,i}}}}{{{{p_{n,i}}}}}. \\ \end{array} \end{aligned}$$

It is clear that the ( tassel embellished sandals Black Pierre Hardy AUsRcyhm1
) is a special case of Theorem 3 with \(r_{n,i} = 1; n=1,2,\ldots ; i = 1,2,\ldots n\) .

click to enable zoom
No Result Found

Find a Professional Organizer Here!

Find Organizing Services for Your Home, Office and Life!

Choose an organizingcategory and your location toget hands-on organizing help today. platform sandals Brown Robert Clergerie B0pYUmq
.

1

Work virtually with an expert organizer to guide you through the organizing process. safety pin sneakers Pink amp; Purple Versus vBjhpPI
.

2

Online courses will teach you how to get organized, or become a professional organizer! Black Nike Edition Air Force 1 Mid 07 Sneakers Comme Des Garons E4y8hZRBjs
.

3

Organizers and Service Providers: ruffle ankle booties Black JWAnderson 3xcbcQ
!

Featured Organizers

The Best Organizing Services

Home Organizer
Sarah Buckwalter
Not Rated
Full View

Organizing Categories

Choose from Many Organizing Related Services

(2)

Auction/Estate/Appraiser

(1)

Closet Designer

(0)

Handyman

(212)

Home Organizer

(2)

Home Stager

(1)

House Cleaner

Show more
260 Providers Follow us
We have a large variety of professional service providers available to help you with your all of your organizing-related projects. Find the help you need today!

Latest Blog Posts

Get Organizing Tips and Advice Here

Organizing policies and procedures are essential for every organizing business. These ensure that everyone has the information and instructions that they need in order to do what they are supposed to be doing. You need to have organizing policies and procedures in place for your business, your staff and your clients. As professional organizers, we […]

Spring organizing tips for your home. Spring is here. The air is warmer, the sun is brighter and this motivates us to want to clear out the old and make everything fresh and new again. Follow these top 10 spring organizing tips to get your home clean and organized and ready for spring! 1. Declutter […]

I wrote a guest blog post for our friends at Maid Brigade and wanted to share it here with you. So, here are 3 simple steps to organize the junk drawer. Most homes have a drawer (or many!) where random little things get tossed when they have nowhere else to go. We call it the […]

Pollinator Partnership

A non-profit 501(c)3 organization-- the largest in the world dedicated exclusively to the protection and promotion of pollinators and their ecosystems.

OUR GIVING POLICY »

2016 FORM 990 »

lightning bolt slipon sandals Black Neil Barrett Iryk6X

Twitter Feeds

Contact Us

Sneakers for Women On Sale Golden Rose Leather 2017 45 65 85 95 Ruco Line Leather GAokYYv

423 Washington Street, 5th FloorSan Francisco, CA, 94111

1 (415) 362-1137

© 1996-2018 Pollinator Partnership